

NAG C Library Function Document

nag_pde_interp_1d_coll (d03pyc)

1 Purpose

nag_pde_interp_1d_coll (d03pyc) may be used in conjunction with either nag_pde_parab_1d_coll (d03pdc) or nag_pde_parab_1d_coll_ode (d03pjc). It computes the solution and its first derivative at user-specified points in the spatial co-ordinate.

2 Specification

```
#include <nag.h>
#include <nagd03.h>

void nag_pde_interp_1d_coll (Integer npde, const double u[], Integer nbkpts,
    const double xbkpts[], Integer npoly, Integer npts, const double xp[],
    Integer intpts, Integer itype, double up[], double rsave[], Integer lrsave,
    NagError *fail)
```

3 Description

nag_pde_interp_1d_coll (d03pyc) is an interpolation function for evaluating the solution of a system of partial differential equations (PDEs), or the PDE components of a system of PDEs with coupled ordinary differential equations (ODEs), at a set of user-specified points. The solution of a system of equations can be computed using nag_pde_parab_1d_coll (d03pdc) or nag_pde_parab_1d_coll_ode (d03pjc) on a set of mesh points; nag_pde_interp_1d_coll (d03pyc) can then be employed to compute the solution at a set of points other than those originally used in nag_pde_parab_1d_coll (d03pdc) or nag_pde_parab_1d_coll_ode (d03pjc). It can also evaluate the first derivative of the solution. Polynomial interpolation is used between each of the break points $xbkpts[i - 1]$, for $i = 1, 2, \dots, nbkpts$. When the derivative is needed ($itype = 2$), the array $xp[intpts - 1]$ must not contain any of the break points, as the method, and consequently the interpolation scheme, assumes that only the solution is continuous at these points.

4 References

None.

5 Arguments

Note: the arguments **u**, **npts**, **npde**, **xbkpts**, **nbkpts**, **rsave** and **lrsave** must be supplied unchanged from either nag_pde_parab_1d_coll (d03pdc) or nag_pde_parab_1d_coll_ode (d03pjc).

1: **npde** – Integer *Input*

On entry: the number of PDEs.

Constraint: **npde** ≥ 1 .

2: **u[**npde** \times **npts**]** – const double *Input*

On entry: the PDE part of the original solution returned in the argument **u** by the function nag_pde_parab_1d_coll (d03pdc) or nag_pde_parab_1d_coll_ode (d03pjc).

3: **nbkpts** – Integer *Input*

On entry: the number of break points.

Constraint: **nbkpts** ≥ 2 .

4: **xbkpts[nbkpts]** – const double *Input*

On entry: **xbkpts**[$i - 1$], for $i = 1, 2, \dots, \text{nbkpts}$, must contain the break points as used by nag_pde_parab_1d_coll (d03pdc) or nag_pde_parab_1d_coll_ode (d03pjc).

Constraint: **xbkpts**[0] < **xbkpts**[1] < \dots < **xbkpts**[**nbkpts** – 1].

5: **npoly** – Integer *Input*

On entry: the degree of the Chebyshev polynomial used for approximation as used by nag_pde_parab_1d_coll (d03pdc) or nag_pde_parab_1d_coll_ode (d03pjc).

Constraint: $1 \leq \text{npoly} \leq 49$.

6: **npts** – Integer *Input*

On entry: the number of mesh points as used by nag_pde_parab_1d_coll (d03pdc) or nag_pde_parab_1d_coll_ode (d03pjc).

Constraint: **npts** = (**nbkpts** – 1) \times **npoly** + 1.

7: **xp[intpts]** – const double *Input*

On entry: **xp**[$i - 1$], for $i = 1, 2, \dots, \text{intpts}$, must contain the spatial interpolation points.

Constraint: **xbkpts**[0] \leq **xp**[0] < **xp**[1] < \dots < **xp**[**intpts** – 1] \leq **xbkpts**[**nbkpts** – 1].

When **itype** = 2, **xp**[$i - 1$] \neq **xbkpts**[$j - 1$], for $i = 1, 2, \dots, \text{intpts}$; $j = 2, 3, \dots, \text{nbkpts} - 1$

8: **intpts** – Integer *Input*

On entry: the number of interpolation points.

Constraint: **intpts** ≥ 1 .

9: **itype** – Integer *Input*

On entry: specifies the interpolation to be performed.

itype = 1

The solution at the interpolation points are computed.

itype = 2

Both the solution and the first derivative at the interpolation points are computed.

Constraint: **itype** = 1 or 2.

10: **up[npde \times intpts \times itype]** – double *Output*

On exit: if **itype** = 1, **up**[**npde** \times **intpts** \times $j + i$], contains the value of the solution $U_i(x_j, t_{\text{out}})$, at the interpolation points $x_j = \text{xp}[j - 1]$, for $j = 1, 2, \dots, \text{intpts}$; $i = 1, 2, \dots, \text{npde}$.

If **itype** = 2, **up**[**npde** \times **intpts** \times $j + i$] contains $U_i(x_j, t_{\text{out}})$ and **up**[**npde** \times **intpts** \times $j + i$] contains $\frac{\partial U_i}{\partial x}$ at these points.

11: **rsave[lrsave]** – double *Communication Array*

The array **rsave** contains information required by nag_pde_interp_1d_coll (d03pyc) as returned by nag_pde_parab_1d_coll (d03pdc) or nag_pde_parab_1d_coll_ode (d03pjc). The contents of **rsave** must not be changed from the call to nag_pde_parab_1d_coll (d03pdc) or nag_pde_parab_1d_coll_ode (d03pjc). Some elements of this array are overwritten on exit.

12: **lrsave** – Integer *Input*

On entry: the size of the workspace **rsave**, as in nag_pde_parab_1d_coll (d03pdc) or nag_pde_parab_1d_coll_ode (d03pjc).

13: **fail** – NagError **Input/Output*

The NAG error argument (see Section 2.6 of the Essential Introduction).

6 Error Indicators and Warnings

NE_BAD_PARAM

On entry, argument $\langle value \rangle$ had an illegal value.

NE_EXTRAPOLATION

Extrapolation is not allowed.

NE_INCOMPAT_PARAM

On entry, **itype** = 2 and at least one interpolation point coincides with a break point, i.e., interpolation point no $\langle value \rangle$ with value $\langle value \rangle$ is close to break point $\langle value \rangle$ with value $\langle value \rangle$.

NE_INT

On entry, **intpts** ≤ 0 : **intpts** = $\langle value \rangle$.On entry, **itype** is not equal to 1 or 2: **itype** = $\langle value \rangle$.On entry, **nbkpts** = $\langle value \rangle$.Constraint: **nbkpts** > 2.On entry, **npde** = $\langle value \rangle$.Constraint: **npde** > 0.On entry, **npoly** = $\langle value \rangle$.Constraint: **npoly** > 0.

NE_INT_3

On entry, **npts** is not equal to $(\text{nbkpts} - 1) \times \text{npoly} + 1$: **npts** = $\langle value \rangle$, **nbkpts** = $\langle value \rangle$, **npoly** = $\langle value \rangle$.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

NE_NOT_STRICTLY_INCREASING

On entry, break points **xbkpts** badly ordered: $i = \langle value \rangle$, $\text{xbkpts}[i - 1] = \langle value \rangle$, $j = \langle value \rangle$, $\text{xbkpts}[j - 1] = \langle value \rangle$.On entry, interpolation points **xp** badly ordered: $i = \langle value \rangle$, $\text{xp}[i - 1] = \langle value \rangle$, $j = \langle value \rangle$, $\text{xp}[j - 1] = \langle value \rangle$.

7 Accuracy

See the documents for `nag_pde_parab_1d_coll` (d03pdc) or `nag_pde_parab_1d_coll_ode` (d03pjc).

8 Further Comments

None.

9 Example

See Section 9 of the document for `nag_pde_parab_1d_coll` (d03pdc).